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SUMMARY

This paper presents two different statistical strategies to elucidate the dependence
of ozone on primary pollutants (nitrogen oxides) and on meteorology. The aim is
to forecast, at 8am of a current day, the maximum ozone value occurring in the
afternoon, using 6 years (1990-95) of pollutant and meteorological data for Paris.
The first method is based on classical methods using simultaneously cluster analysis,
analysis of variance, discriminant analysis and stepwise regression. We identify three
distinct and homogeneous groups in Paris area. Within these groups, daily curves of
ozone pollution form clusters of decreasing levels; these clusters are well discriminated
by previous ozone, primary pollutant and meteorological data. The second method
is based on nonparametric methods using a kernel estimator of an autoregressive
function with exogenous variables. It works by analogy on climatic and pollution
conditions. The forecast is a weighted sum of maxima observed in the past. We
compare the two methods on 1996 data, and propose some improvements to avoid
forecast errors in particular cases.

KEY WORDS: air pollution, ozone concentration, prediction, linear model, kernel
nonparametric forecasting.
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1. Introduction

As it occurs in all great cities, Paris has a serious photochemical ozone (O3) air pol-
lution problem. When the urban emission pattern of O-forming pollutants is fairly
uniform, it seems that the variations of O3 concentrations are controlled by meteo-
rological factors and by a series of atmospheric reactions between primary pollutants
such as nonmethane hydrocarbons (HC) in the presence of nitric oxide (NO) and
nitrogen dioxide (NO3).

Accurate O3 forecasts can be used to protect sensitive individuals from excessive
concentrations of O3, when sufficient leading time is given to the public. They can
also be used as a guidance in air pollution advisory committees, giving to the admi-
nistration some tools to help to decide whether short-term control strategies need to
be considered during air pollution episodes. Some similar studies were undertaken
by Clark (1982), Eder et al. (1994), Rhodes and Miller-Gonzalez (1994) and Ryan
(1995).

Our modelling approach consists in determining a statistical relationship between
a predictand (O3) and variables (henceforth called predictors) from either nitrogen
oxides (NO and NO,) or meteorological measurements (temperatures and wind velo-
city at different heights). The following data are available:

— one-hour pollution measurements from 8 air quality stations measuring Oz, NO
and NO; (measurements initiated at different dates from 1990 to 1995, see Table 1).

— one-hour meteorological measurements from Saclay site (in the suburbs of Pa-
ris); these data are supposed to be representative of climatic conditions all over the
studied Ile-de-France area.

We must specify here that the period under study is a summer one (from May
1st to September 15th), as air pollution occurs during it.

The methods we used were either ”classical” or "more advanced”. By classical,
we mean methods already used in similar situations (clustering, regression, discrimi-
nation) adapted to our case study; by more advanced, we mean nonparametric ones
based on kernel estimator of an autoregressive function with exogenous variables. All
variables used start from midday on the day before prediction to 8am on the day of
prediction.

First, we shall present available data (section 2); in a second step the different
methods (section 3) and, at last, results with possible improvements (section 4).

The study was administered through a contract with the Orsay University Sta-
tistical Laboratory (Paris XI University) and sponsored by AIRPARIF (Surveillance
de la Qualité de 1Air en Ile-de-France).
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2. Data

2.1. The 8 stations for pollutants

The one-hour pollution measurements were made on 8 stations, as indicated in Table
1 and Figure 1. One of the major, and primary, problems is existence of missing data,
due to failures of sensors; these missing data represent 10% of the data base. When
we have few such data in a sequence (one or two hours) we reconstructed them by
spline interpolations; when the gap is greater we treated them as missing data.

All three pollutants (O3 as the predictand, NO and NO, as predictors) were
measured simultaneously. The following notations are used with the common mea-
surement unit (ug/m®): P (O3 concentration), N (NO concentration) and M (NO,
concentration). We shall also use global nitrogen oxides MN = N/30 + M/46 (30 and
46 corresponding, respectively, to molecular weights of the two components).

Table 1. Data for the 8 stations with starting year of measurements

Station Code Starting year
Neuilly 1F92 1990
Paris, 13th district 13F75 1991
Tour Eiffel, Paris 7th district TF75 1992
Aubervilliers - 1F93 1990
Créteil 1F94 1990
Montgeron 4F91 1994
Champ-sur-Marne 1F77 1990
Tour Saint Jacques, Paris 4th district  4F75 1991

2.2. Saclay site for meteorological variables

Temperatures were measured in °C at three heights: Om, 40m and 100m. We used:

- T : soil-temperature (Om), and two gradients

— G : (Temperature at 40m - T)/0.4,

- H : (Temperature at 100m - T),

-V and W : wind velocity (unit: m/s) measured at 110m (V) and at 58m (W).

In the following observations of each variable will be indexed by i denoting time
(hour) so we shall use the symbols P;, N;, M;, T;, G;, H;, V; and W;. Except if
differently indicated in text, for pollutant variables, 7 = 0 corresponds to midnight
and ¢ = 7 to 7am the current day; for meteorological variables i = 1 corresponds to
midday the day before prediction, and 7 = 21 to 8am the current day.
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Carte d'implantation des sites de mesure de la pollution

(1) Paris 4éme (2) Paris 7éme (3} Paris 13éme
(4) Champs sur Marne (5) Montgeron  (6) Neuilly sur Seine
{7) Aubervilliers (8) Créteil

Figure 1. Network AIRPARIF. Positions of the 8 stations in Ile-de-France.

2.8. AIRPARIF alarm rules

AIRPARIF had already defined some alarm rules concerning O3 (Table 2); in fact
level 3 was never attained, and is out of our topic.

Table 2. AIRPARIF alarm rules

Alarm level Rule
0 7 stations with O3 concentrations less than 130 g/m°
1 at least 2 stations with O3 concentrations exceeding 130 g/m3
2 at least 2 stations with O3 concentrations exceeding 180 g/m3
3 at least 2 stations with O3 concentrations exceeding 360 g/m?

One of the constraints of our study was to apply the same rules after having made
O3 predictions for the eight stations. So, we are going to mimic the same strategy,
even if we may ulteriorly propose an other one for later studies on alarm probability
level.



On forecasting ozone episodes in the Paris area 41

3. Methodology

As indicated above, we shall propose two different methodologies to forecast Os, linear
and non-parametric methods.

8.1. Linear methods

For Oj the total number of available observations (day xstation) is 828 for the period
from 1990 to 1995 during the pollution period (May-September). Clearly, the data
base being not sufficient for every station, it was difficult to develop a statistical
model for each of them; so we decided to cluster similar stations. This was done in
two major steps:

— a reduction step in which we summarize variables and groups, in order to have
easily interpretable variables and homogeneous subgroups,

— & modelling step in which we shall furnish models for O3 forecast in subgroups.

A description of all methods used may be found in books on the linear model
and multivariate analysis, see for example Tomassone et al. (1993); all computations
were made using SAS (1985).

3.1.1. Reduction step

3.1.1.1. Eristence of a ”virtual Paris”
The first step consists in an ANOVA (Analysis of Variance) for every P;. The
statistical model is the following:

Pijnk = pi + stain + angi + jouriji + €ijnk (1)

where:

~ 4 corresponds to the hour (: = 1,...,24),

— j corresponds to the day (j = 1,...,828, the total number of days in the data
base),

— h corresponds to the station (h =1,...,8),

— k corresponds to the year (k = 1 for 1990, 6 for 1995),
and

— Pjjni is the observed value of O3,

— u; is the mean effect for hour ¢ (if the ”design” were balanced it would be the
mean value for O3 at this hour),

— sta;p, is the station effect (a qualitative one),

— anyy, is the year effect,

— jourijy, is the day effect (a qualitative one),

— ej;nk is a random effect with classical assumptions of independence and Normal

distribution with zero mean and constant variance o?.
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Model (1) is not a complete one. Due to the lack of data we are not able to insert
in it a dayxstation interaction. By estimating station effect, it is possible to analyze
similarity of the stations and to cluster them.

3.1.1.2. Clusters of stations

Each station effect is associated with a Student statistic ¢;;, which permits us to
analyze a matrix (24 rowsx8 columns) by a Principal Component Analysis (PCA).
A graphical analysis of PCA results leads us to cluster the 8 stations in 3 subgroups
(Table 3). With only 2 subgroups, the heterogeneity is too large within one of them;
with 4 subgroups the only difference is due to the splitting of subgroup 2 (1F93, 4F91
on one part and 1F94 on the other).

Table 3. Stations clustered in three subgroups

Subgroup Stations
PM1 13F75, 1F92, TF75
PM2 1F93, 1F94, 4F91
PM3 1F77, 4F75

Having this result, we do once again an ANOVA similar to (1) for each subgroup
g (9 =PM1, PM2, PM3). Eliminating station and year effects, we are able to estimate
Pijt4(g) by Pij++(g) for each hour (¢) and for each day (j). These values give a curve
(with hour in abscissa) characteristic of each day under analysis (Figure 2).

For other pollutants (NO and NO,) it is also possible to obtain similar curves
using ANOVA modelling by computing estimated values Nij++(g) and ]\Zfij++(g). We
are now in situation to analyze O3 evolution by modelling P; (g (the predictand)
as a statistical function of Njj4 1 (g), Mijy4(g)» Tij» Gij, Hij and V;; (the predictors).

This analysis was performed also with other available statistical tools. By using
influence diagnostics, we were faced with outliers.. We decided to delete all observa~
tions in 1991 for 1F92 station, because of errors in sensors.

8.1.1.8. The intermediary predictors

At this step we deal with the problem of estimating the maximum O3 value for
a day (always encountered between 2pm and 8pm) as a function of:

— pollutants values during the night preceding the day for which we want to
forecast maximum O3 value: Py to Py (autoregression), Ny to N7 and My to My; the
values before seem to be not significant, except a remanence of atmospheric conditions
captured by Ppaxo, the maximum observed value of the previous day (0 indicates
observed value at midnight and 7 the observed value at 7am).

- temperature and gradient values T to T1, G to G21, Hy to Ho (1 indicates
observed value at midday the previous day and 21 at 8am).

— wind velocity values Vj to Vg (4 indicates observed value at 4am and 8 at 8am).



On forecasting ozone episodes in the Paris area

PM1: 13687,1692,7167
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Figure 2. Graphs characteristic of Ozone evolution from 1 am to 12 pm
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The total number of predictors is 91. It was difficult to use directly these variables
because their number is too large and all of them are too much correlated. This
multicollinearity induces very instable results. It was decided to transform them by
using linear combinations; the transformations are based either on physical knowledge,
as the molar sum for nitrogen oxides

MN; = M;/46 + N;/30, )

or on linear transformations given by PCA. But, when we did so for each variable, we
saw that the successive principal components (accounting for more than 95% of total
variability) had very simple interpretations: the first was practically the mean, the
second a linear tendency, the third a quadratic component and the fourth, if any, a
cubic (Table 4). So, having these so simple interpretations in mind, we thought it was
better to introduce these natural transformations, classical in ANOVA for studying
components effects. One of the primary reason was justified by the ability to estimate
them even with partially missing data; in fact this possibility was not used until now.
When the percentages of variability accounted for by these linear transformations
were not sufficient, we added to them some other simple linear transformations such
as mean on an interval between two different hours.

The total number of variables is now 48. We may guarantee that they contain
practically the same information as the basic ones, and have the advantage of being
well understood from a physical point of view. We may say that they represent, for
each set (P,N,M,T,G, H,V and W), a good summary of the 8 curves. Now we are
able to focus our interest on our principal aim: how these predictors, which contain
practically all our available information in a more stable form than the basic data,
may help us in forecasting maximum pollution, knowing a short history of pollution
and meteorological evolution?

But these predictors are still highly correlated: until now transformations concern
only components within the eight sets of data (P,M,N,T,G,H,V and W). " So
multicollinearity still exists between the sets, which may cause difficulties in obtaining
stable results. Therefore we decided to introduce new predictors to protect agamst
this fact.

3.1.1.4. The final predictors
The idea is simple: we do some regressions and use the residuals which have the
advantage of being uncorrelated with variables used as regressors. More formally, this
means that having a variable we compute first its regression equatio.. on a specific set
of other variables; as an example MP0203 may be regressed on MP0607 and MP0405,
giving:
E(MP0203) = by + b1 M P0607 + by M P0405.
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Table 4. First transformations from basic variables

New variables Linear combinations

Ozone pollutant (9 autopredictors)

~LP2407 —T¥Po—5%P1-3%Po~17P3+17P4+3¥P5s+5*Pg+7"P7)/8
QP2407 +7*Po+1*P1—3*P2—5*P3—5*P4—3*P5+l*Ps+7*P7 /8
CP2407 —T*Po+5*P; +7*P2+3*P3-—3*P4—7*P5—5*Pﬁ+7*P7 /8
MP2407 Po+P1+P2+P3+Ps+Ps+Ps+P7)/8
MP2401 Po+P1)/2
MP0203 P,+P3)/2
MP0405 P4+Ps)/2
MP0607 Pe+P+ /2
PMAXO0 Maximum Ozone for the previous day
Nitrogen pollutant (9 predictors)
MMO0607 Me+M7)/2
MNO No/30+Mo/46
MN1 N1/30+M1/46
MN2 N2 /30+M2/46
MN3 N3/30+Ma/46
MN4 N4/30+M4/46
MN5 N5/30+Ms/46
MN6 Ng/30+Mg/46
MN7 N7/30+M7/46
Temperature (7 predictors)
MTT1518 T4+ Ts+Te+17)/4
MT1921 T8+T9+T1o)/3
MT2207 T114+T124+T13+T14+T15+T16+T17+T18+T19+T20)/10
QT1421 7*T3+1*T4—3*T5~5*T6—5*T7—3*T8+1*Tg+7*Tm)/8
DT1907 Ts~T20)/12
T20
T21
Gradient 40m (9 predictors)
DG2319 Gi2-Gg)/4
L.G2407 —7*G13—5*G14—3*G15—1*G16+1*G17+3*G18+5*G19+7*G20 /8
QG2407 +7*G13+1*G14-3*G 15-5*G16-5*G17-3*G18+1*G10+T*G2o /8
MG2407 G13+G14+G15+G16+G17+G1s+G19+G20)/8
DGO0723 Gzo—Gm)/g
MG2402 G13+G14+G1s5)/3
MG1416 G3+Ga+Gs)/3
G20
G21 - -
Gradient 100m (9 predictors)
DH2319 H,2-Hg)/4
LH2407 —T*H;3-5%H14-3*H;5-1 *Hqg+1*¥H174+-3%His+5*¥H 19+ 7*Hoo /8
QH2407 +7*H13+1*H14—3*H15—5*H16—5*H17—3*H18+ 1*H;9+7*Hgo /8
MH2407 Hiz+Hia+His+Hie+Hiz+His+Hio+Hz20)/8
DHO0723 Hoo-Hi2)/8
MHO0307 His+Hi7+Hig+Hig+Hz20)/5
MH1416 H3+H4+H5)/3
H20
H21
Wind velocity (5 predictors)
MV0407 Va+Vs+Ve+Vr)/4
LV0407 —3*V,-1*V5+1*Ve+3*V7) /4

QV0407
V7
V8

Va-Vs-Ve-V7)/4

45
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Table 5. The final predictors, residuals are coded with a leading R

Predictors Regressors
Ozone pollutant (9 autopredictors]
MP0607 (Ps+Pz)/2

PMAXO0 Maximum Ozone for the previous day
MP0405 MP0607

MP0203 MP0607 MP0405
MP2401 MP0607 MP0405 MP0203
MP2407 MP0607

LP2407 MP0607 MP2407
QP2407 MP0607 MP2407 LP2407
CP2407 MP0607 MP2407 LP2407 QP2407
Nitrogen pollutant (9 predictors)

MMO0607 (Me+M7)/2

MN3 N%30+M3/46
RMN2 MN3

RMN1 MN3 MN2

RMNO MN3 MN2 MN1
RMN4 MN3

RMN5 MN3 MN4

RMN6 MN3 MN4 MN5
RMN7 MN3 MN4 MN5 MN6
Temperature (7 predictors)

MTI518 T4+ Ts+T6+T7)/4
QT1421 7T*T3+1 *T4—3*T5—5*Ts—5*T7—3*T8+ 1 *T9+7*T10)/8
DT1907 Ts—T20)/12

T20

T21

MT2207 T20

RMT1921 T20 MT2207
Gradient {0m (9 predictors)

Iéd2%2402 (G13+G1a+G15)/3
MG2407 H20

LG2407 H20 MG2407
QG2407 H20 MG2407 LG2407
RG20 H20

DG2319 DH2319

DGO0723 DHO0723

MG1416 MH1416

Gradient 100m (9 predictors)

DH2319 Hy,-Hsg)/4

DHO0723 Ha0-H;2)/8
MH1416 H3+H4+H5)/3

H20

H21

MH2407 H20

LH2407 H20 MH2407
QH2407 H20 MH2407 LH2407
MH0307 H20

Wind velocity (5 predictors)

V7

\4:]

MV0407 V7

LV0407 V7 MV0407

QV0407 V7 MV0407 LV0407
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Then, we use as the final predictor not correlated with MP0607 and MP0405
RM P(0203 = M P0203 — E(M P0203).

The final set of variables is given in Table 5.

8.1.2. Modelling step

Having the 3 subgroups (PM1, PM2 and PM3), we are going to analyze them
separately in the following manner:

(1) use of the profile for O3 curve to define classes of similar pollution,

(2) separation of classes through an DFA (Discriminant Factorial Analysis) using
the best predictors within the 48 previous ones,

(3) building of a regression model within each class to forecast maximum O3
pollution.

8.1.2.1. How to build O3 pollution classes

Model (1) applied to each subgroup helps us to define a "mean-day”, corrected
for year and station. The data matrix (rows: mean-day; columns: hour) is clustered
by rows using a method that Anderberg (1973) calls nearest centroid sorting. A set
of points (mean-day) is selected (the cluster seeds) as a first guess of the means of the
clusters. Each mean-day is assigned to the nearest seed to form temporary clusters.
The seeds are then replaced by the means of the temporary clusters. The process is
repeated until no changes occur in the clusters. The clustering is done on the basis of
Euclidean distances computed on standardized variables (the 24 hours of a day). This
process also permits to detect outliers: the corresponding mean-day often appears as
a cluster with one member only (procedure FASTCLUST in SAS).

By trial and error, in every subgroup we obtain 4 classes C; (t = 1,2,3,4) by
decreasing order of maximum pollution from C; {most polluted) to Cy (least polluted).
The sizes of classes are given in Table 6, with years used in each station.

3.1.2.2. How to classify one day in a station in a pollution class

The following step consists in an DFA using the 48 predictors (autopredictors and
predictors) as shown in Table 5. But, here again, we have tried to delete some pre-
dictors, having always in mind that it is better to use a minimal number of predictors
to obtain stable results. The process was the following:

— univariate test on every predictor by an F-test in the 48 ANOVA, associated
with multivariate analysis of the resulting discrimination (because a predictor may be
of no interest alone, but extremely important if associated with one or more others),

- a stepwise selection, using STEPDISC procedure in SAS, to remove non-
significant predictors, ‘

— common sense rules to minimise misclassification, as we shall see further.

The selected predictors are furnished in Table 7.
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Table 6. Classes size in each subgroup

Subgroup Class Size O3 Station Year
C: (#mean-day) maximum 90 91 92 93 94 95
PM1 1 23 171 1F92  * ¥ O *x %
2 70 117 13F75 ¥ ook ok X
3 157 76 TF75 ok ox X
4 326 35
Total 576
PM2 1 19 162 1F93 * * * x *
2 109 113 1F94 * * * *x x %
3 172 76 1F91 * ok
4 460 43
Total 660
PM3 1 39 125 1IF77  * % x % %
2 186 74 4F75 ok ok kX
3 44 66
4 477 33
Total 718
Table 7.Predictors for discrimination in the 3 subgroups
Number of . .
Subgroup . Selected predictors for discrimination
predictors
PM1 33 6 : MP0607, RMP0405, RMP2401, RMP2407, RQP2407, RCP2407
8 : MM0607, MN3, RMN2, RMN1, RMNO, RMN4, RMN5, RMNG6,
RMN7
4 : MT1518, DT1907, RMT2207, RMT1921
4 : MG2402, RMG2407, RG20, RDG0723
8 : DH2319, DH0723, MH1416, H20, RMH2407, RLH2407,
RQH2407, RMH0307
3: V7, RMV0407, RQV0407
PM2 29 7 : MP0607, PMAX0, RMP0405, RMP2401, RMP2407, RLP2407,
RQP2407
5 : MM0607, MN3, RMNO, RMN4, RMN7
4 : DT1907, T20, RMT2207, RMT1921
6 : MG2402, RMG2407, RQG2407, RG20, RDG0723, RMG1416
6 : DHO723, H20, RMH2407, RLH2407, RQH2407, RMH0307
1: RMV0407
PM3 22 4 : MP0607, PMAXO0, RMP2401, RMP2407
3 : MM0607, MN3, RMN2
3 : MT1518, T21, RMT1921
6 : MG2402, G21, RMG2407, RLG2407, RDG2319, RDG0723
5 : DH2319, DH0723, RMH2407, RLH2407, RMH0307
1: RMV0407
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Some variables contain more information than others in discrimination, but all
are useful in this step. Some appear in the three subgroups, as last available pollution
before the forecast (MP0607, MMO0607), some residual effects for O3 (RMP2407) or
for temperature (RMT1921), gradients (MG2402, RMG2407, RDG0723, DH0723,
RMH2407, RLH2407, RMH0307) and wind (RMV0407). Some are specific to sub-
groups as Ppaxe for PM2 and PM3.

To assign a mean-day in a class we use the classical Mahalanobis distance D?;
this distance is naturally the Euclidean distance in the space defined by discriminant
factors:

D?(x) = (x — m)TV; (x — my), 3)

where x is the vector containing the chosen predictors, m; is the mean vector for class
C,; with the same predictors and V; is the within-class covariance matrix.

With the assumption of MultiNormality, the a posteriori probability of pertaining
to C; may be computed as

pe(x) = exp{—0.5D}(x)}/ > exp{-0.5D7(x)}. (4)
» t=1,4

The classification results are furnished in three subtables (Table 8), with the
numbers of mean-days for each class; note that these numbers are less than those
indicated in Table 6, due to missing data in the predictors (the DFA may be performed
only on complete data).Diagonal elements of these three tables correspond to well
classified mean-days, the lower parts show omitted assignments (the mean-day is
assigned to a lower class), and the upper parts — false assignments (the mean-day is
assigned to an upper class).

Table 8. Misclassification results for the 3 subgroups (assignment by resubstitution)

Subgroups PM1 PM2 PM3

Assignedclass: 1 2 3 4 Total 1 2 3 4 Total 1 2 3 4 Total
Observed class

1 123 1 0 16 13 1 0 0 14 28 1 0 2 31

2 547 10 4 66 12 64 18 8 102 15109 9 34 167

3 52087 32 144 5 24 8 35 149 3 0 32 4 39

4 2 8 57 245 312 2 19 59 346 426 3 63 24 368 458

Total 24 78 155 281 538 32 108 162 389 691 49 173 65 408 695

Well assigned 391/538 = 72.7% 508/691 = 73.5% 537/695 = 77.3%
False assignment 50/538 = 9.3% 62/691 = 9.0% 50/695 = 7.2%

Omitted assignment 97/538 = 18.0% 121/691 = 17.5%  108/695 = 15.5%
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Different results are obtained by jackknifing, slightly worse: for PM1, the three
percentages are respectively 65.2%, 13.4% and 21.4%. In fact, the percentages com-
puted in Table 8 are of no great interest. It would be interesting to assign costs to
each misclassification, as some errors are more serious than others. Our aim is to
forecast an O3 value, and an assignment to a class is not the final result; it is only
a step to choose a regression model. Broadly speaking, when the assignment is not
good, it is difficult to find the exact reasons; but we may argue that often we are on
the borders of two classes.

8.1.2.83. How to forecast mazimum Oz pollutions

Now we are going to choose the model. As we have done until now, to choose a
model we must select the best predictors (the regressors) in each class. This choice
must lead to the smallest number of regressors because in the most important classes,
more specifically in C;, we have few mean-days at our disposal and they are the most
important for control strategy. The basic idea is to:

(1) choose a model for each mean-day ”;” in each class C; in a subgroup, by
a stepwise regression (STEPWISE procedure in SAS), selecting optimal subsets of
independent regressors in a multiple regression analysis by maximum R, improvement,
with a model such as:

Yi=p+ a1 X5 + asX2; +¢€5, j=1,..,n, (5)

where Y; is the maximal pollution for mean-day ”;”, Xy; and Xs; are the selected
regressors in the total set x and n is the number of mean-days for the class
(2) make a station adjustment by the model

Yin = pp, + a1n Xujn + aanXojn +€n, j=1,...,n;h=1,.., H, (6)

where h is the index for station and H = 3 for PM1 and PM2, and 2 for PM3.

Having estimated a,, and aqp, it is possible to obtain an estimated value for
Y. The different predictors selected in each subgroup class are given in Table 9.
The last lines of this table are good indicators of differences between stations in
subgroups: quite different R? values mean that station effects are important. The
residual standard deviations are around 20; this value is similar to the sensor error.

The major problem here is due to the selection of predictors. In this situation, to
select them we are sometimes obliged to come back to the original ones; the informa-
tion contained in residuals may not be sufficient when only a subset of predictors is
selected. So, the selection is made on both, original . d residual. Even if the quality
of models is not generally good, even if all predictors are not used, we must not forget
that these regressions follow the discrimination step in which more predictors were
used. These regressions are only local ones.
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Table 9. Selected predictors in models; R?: determination coefficient, sp: residual
standard deviation, n: sample size; * : residual is used; @ : original predictor is used.

Subgroups PM1 PM2 PM3
Class: Cl Cz C3 C4 Cl Cz Ca C4 Cl C2 C3 C4
Predictors

Ozone
PMAXO0 * * *
RMP0405 * *
RMP2401 @ @
RMP2407 Q@ Q@
RQP2407 *
RCP2407 * Q
Nitrogen
MMO0607 * *
RMN2 @ Q
RMN1 * *
RMN4 *
Temperature
MT1518 * * *
QT1421 *
T20 *
T21 * *
RMT2207 * : Q@ @ Q@ *
RMT1921 Q@ Q@
Gradient 40m
MG2402 *
G21 *
RG20 *
RMG1416 *
Gradient 100m
H21 *
RMH2407 (@] * @]
RLH2407 *
RQH2407 *
RMHO0307
Wind velocity
V8 *
RMV0407 Q@ * @
RQV0407 *

*©

® *

Statistics on mean day
R* 0.44 055 043 0.25 041 0.34 0.29 0.25 0.51 0.48 0.58 0.27
SR 20 13 13 13 14 15 11 15 16 13 14 13
n 19 66 145 312 15 107 153 429 36 175 43 464
Statistics on mean day corrected for station effect
R? 0.24 033 025 024 035 0.27 0.24 0.26 0.37 0.35 0.48 0.26
SR 32 20 19 16 20 21 16 18 21 19 19 14
n 51 175 385 835 46 259 333 907 70 321 82 718
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8.1.8. Probability for a day to be assigned to an alarm class

The forecasts are only estimates and, as such, they are not exact values; this
statement is linked with all statistical problems, even if we must come to a decision.
But the decision is based on dubiousness. Some precision measures may be given:
for the estimate f’jm, for each class C;, we may estimate the standard deviation
Sjnt- Without weighting, we assume that the true, and unknown, pollution value y;n
(computed in C; for station h) belongs to a confidence interval defined as

Yin € Vit = taj2in—pSints Yint + taj2m—pSintl, (M

where t,/9;n—p is the Student t critical value with n — p degrees of freedom at the
significance level o (n being the number of observations in Ci, p the number of
regressors used in the forecast model). We may also estimate the probabilities for
an observed value to be greater than the different AIRPARIF levels (130 or 180):
Pr(Y;» > 130) and Pr(Y;, > 180). If we use the weighting model, as it will be defined
in 4.1 for forecasting, we obtain an estimate and a weighted standard deviation

Y = Zpt?jht, ZZDt =1, (8)
t ¢

1
sin =) Pestul?, (®)
t

and we may obtain a confidence interval similar to (7). But the knowledge of these 8
intervals is not directly linked to the probability of pertaining to an AIRPARIF alarm
class. The study is in progress.

3.1.4. Application to a new day

Having done the analysis described so far, we are able to forecast maximum O3
pollution for a new day. At 8am, we must have all the predictors for the eight stations
(pollutant for each station, meteorological values for Saclay station). The strategy.is
indicated in Table 10.

For 1996, the results will be presented in Section 4.

Table 10. Forecasting strategy for a new day

1. For each station - 1la. Assign, using the predictors, a probability p;(x)
of pertaining to a pollution class C, for each station.
1b. Estimate, by weighting or not, O3z value.
2. Associate the Decide in which AIRPARIF alarm level the day is assigned.
8 estimations The probabilities are, until now, used to decide if
the day is close to the border of two classes.
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8.2. Non-parametric method
8.2.1. Introduction

As a complementary point of view to the linear case we develop a non linear
approach which introduces new possibilities of modelling and is easy to interpret.

The non-linear method we use is a kernel nonparametric forecasting method
with exogenous variables. This method is a very general one and can be used in many
situations. It can be interpreted heuristically by means of similarity of days in terms
of favourable climatic conditions in producing pollution. This will permit to analyze
the origins of bad predictions and to detect atypical days. The main drawback of this
method is that it needs a large data base, and in our case high pollution peaks are not
very frequent, the history of the data base being too short. However, in this paper
we confine ourselves to this method [an approach using the additive separable models
(Hastie, 1986) in some sense intermediate between linear and non-linear approaches,
is now being developed).

8.2.2. Nonparametric model with exogenous variables

3.2.2.1. Non-linear model

The model is a non linear autoregressive one of Markovian type, with exogenous
variables. Exogenous variables are defined as variables that influence the endogenous
variable but are not themselves influenced by the endogenous variable. Let (X, )nen,
X, € R be the process we intent to forecast and (Z,)nen, Zn € RP the process of
exogenous variables. The model is written in the form

Xot1 = F(Xn, Zn) + €} ©)
Zn+1 = G(Zn) + 5% ?

with (gl), (¢2) being independent white noises which are also independent of X and
Z.

We are interested in predicting X, +1 using the history {(Xk, Zx), k < n}. Usu-
ally, the best predictor in a quadratic sense is the conditional expectation. For the
Markovian structure the predictor is provided by the autoregressive function:

E(Xni1 | (Xn, Zn) = (z,2)) = F(z,2) for t € Rand z € RP. (10)

3.2.2.2. Estimation
Let K be a p + 1-dimensional kernel, (h,) a real positive decreasing sequence,
named window or bandwidth, and

1 U
Khn(u) = WK(h—n'), ue Rp+1'
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We estimate F' by the Nadaraya-Watson kernel estimator of the autoregression
function (assuming 0/0 = 0):
t=0Kn, ((z,2) = (X4, Z4)) Xea
. : (12)
LicoKna (7, 2) — (X3, Z:))
Typical kernels are the Epanechnikov and the Gaussian kernels.
The kernel predictor is:

F(z,z) = x

Xnsijn = F(Xn, Zy). (12)
The prediction interval is [gin; gsup) defined by the two empirical quantiles
P(Xpt1jn < Ging) = 0.1 and P(Xnt1jn < Goup) = 0.9, (13)
that is to say
P(gint < Xns1jn < Goup) = 0.8. (14)

3.2.2.8. Convergence

The literature on convergence of estimators (11) and (12) in the autoregressive
case

Xny1 = F(Xn,Xn—I, ~--,Xn—r) +é€n

is extensive. In particular, results of almost sure pointwise convergence and results of
joint asymptotic normality of the estimated regression at a finite number of distinct
points are available. With nice assumptions on F and &,, we can refer to Duflo (1990)
and Yakowitz (1989). If moreover the sequence is mixing we can, for example, quote
Ango Nze and Portier (1994), Ango Nze and Doukhan (1993), Bosq and Lecoutre
(1992), Robinson (1983), Truong and Stone (1992) for the almost sure convergence,
and Schuster (1972), Roussas and Tran (1992) for the convergence in distribution.

With exogenous variables there are very few results of convergence.

3.2.2.4. Interpretation
The estimator F* defined by (11) can be reformulated as

n-—1

F(xnazn) = an,t$t+1, (15)

t=0
where wy, ; is defined by
Wy = K, ((z, 2) = (21, 2:))
™t Z?:O Kh”((CL‘, Z) - (xt: Zt))

This means that the forecast value Zn41)n is the barycentre of the realizations asso-
ciated to the coefficients wy, ;.

(16)
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Let’s choose K, a one-dimensional positive kernel decreasing on R*, D, a distance
on RP*!) and set

K(u—v) = K(D(u,v)). 17)

Then the coefficients wy, + can be interpreted as similarity indices between the vec-
tors (z,2:) and (zn, zn), the former designing the process at time ¢, and the latter
the present of the process. Thus, because of the kernel properties, the greater the
distance between the past and present vectors, the smaller the value of the kernel.
Consequently,

— in order to obtain a high similarity index between a past instant ¢ and the
present instant n, the similarity must be strong for all the variables;

— if the distance between (x,2:) and (zy,, 2,) is great, the kernel value will be
insignificant and will set the similarity index almost to zero.

The value of the window parameter h is highly related to the choice of the distance
D. If the point (Xn, Zy) is isolated in the space RP*!, h has to be large enough to
ensure that there are some points in a ball of size related to h centered at the point
(Xn, Zn). But if h is too large the prediction will loose accuracy for the points which
are not isolated. To avoid this drawback, we will use an alternative method, that is,
a nearest-neighbour method: we will choose a number L and for each point compute
the bandwidth A so that exactly L points are in the support of the kernel.

This computing choice adapts the kernel locally to the density: if a great con-
centration of points occurs, then A is small. The density of similar points will be very
high around the point representing present n. If the points are sparse, h will be large,
but in fact, the same number of points will interfere in the prediction.

The main idea arising from this interpretation is that "the same circumstances
lead to the same futures”.

3.2.8. Oz air pollution

3.2.83.1. The choices

In the context of forecasting Os air-pollution, this idea is expressed under the
following terms: the days with the same precursor emissions and the same meteoro-
logical conditions will be followed by the same maximum O3 air pollution.

The variables we use are:

- X, the O3 concentration daily maximum, denoted by PMAXO0 beforehand,

~ Zy, defined by the precursor emissions (nitrogen oxides) and the meteorological
conditions (temperature, gradient and wind velocity).

After studying the relationship between the different components occurring in
the process of O3 production (see for example Toupance, 1988), and after numerous
attempts with many variables, we retain the following ones:
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— Ty, the maximum temperature of the day n,

— Wy, the mean wind velocity at 58m during the afternoon of the day n,

— Gp, the sum of the positive values of the gradient at 40m in the night between
the day n — 1 and the day n,

— MN,, the value of the nitrogen oxides molar sum, at 3am on the day n.

In order to compute the similarity indices w,, ; we have to choose a kernel K , a
number L of nearest-neighbours and a distance. The kernel K is the Gaussian kernel,
the distance D, ; between days ¢t and n is a weighted Euclidean distance :

p+1
Due= | Y ail¢F—¢H2 ("¢ e R (18)
i=1

In order to determine the number of nearest neighbours and the o; coefficients,
an optimization is conducted over a set of specific days, named N, which contains
several typically polluted days. Let M AE be the mean absolute error defined by

1 N
MAEq 1) = Ty neZN | Xntjn — Xng1 |- (19)
Each variable has its own scale and in order to indicate which one has a strong
effect (high ; coefficient) it is useful to rescale the variables by dividing them by
their one-hour standard deviations.
To obtain the optimum values of the coefficients and the bandwidth, we search
on a grid of values of o and L(ctopt, Lopt) = arg min(M. AE, 1). Finally, the standard
deviations are incorporated into the coefficients.

3.2.8.2. Results and comments

Optimization gives:

— L =10. Actually, in most cases the number of significant (with high similarity
index) days is only 2 or 3; this is due to the fact that there are few polluted days in
the data base and the optimization was driven on those days. ‘

~ a; = 1 (for O3 maximum on the previous day, PMAX0). High value of this
variable indicates favourable climatic conditions and its coefficient is significant.

—ag =5 (for T,,). The value of the coefficient is high so temperature seems to be
a very important variable. It is not surprising because of the well known relationship
to the air pollution formation during summer.

- a3 =1 (for W,). If the wind velocity is high the polluted air is dispersed,
which explains the presence of this variable.

- oy = 0 (for G,). This variable is perhaps not convenient to measure the mixing
layer height. In addition, it may be too large in Saclay compared to the Paris area.

—as =0 (for MN,). There is no influence of this variable.
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3.2.8.3. Forecasting

The predictions are made for each air quality measurement site, with the same
meteorological data for all the sites. On the morning of day n, the previous day
maximum Og concentration in each site is available, but the variables T}, and W,, are
unknown and must be replaced by predictions. These predictions can either be the
National Meteorology Office ones (available the day before the evening) or predictions
computed by the nonparametric forecasting method using the available data. The
models we use are the following:
Temperature forecasting:

Tn = fl (t?a ey t;}’ G‘n) + Mn (20)

with ¢7 denoting the temperature at 10am of the previous day, ... , t* — the tem-
perature at 6am of the day (r = 21). The kernel is the Gaussian one, the distance
Dyt = /Y=y B} — 152 + (G, — G;)? and the optimization process gives L = 10,
f=3v=11.

Wind velocity forecasting:

4
1
Wy = fa(wn) + vn, where v, = 1 Zw?, (21)
i=1
with w} denoting wind velocity at 3am of the day n, ... , w} ~ wind velocity at 6am

of the day n.
The kernel is the Gaussian one, the distance D, t = y/(wn —w)? and the opti-
mization process gives L = 50.

4. Results and discussion

Computations by the two methods have been done for two sets of data: summers 94
and 95 and summer 96. For the first period the models are fitted with the knowledge of
all the data until 30th September 1995; for the second period forecasts are computed
in real situation, that is, the data known are those until the day before the one
forecasted. It is known that summers 94-95 were very hot and more polluted than
previous years, summer 96 was less hot, more windy and less polluted: none level 2
alarm was detected.

4.1. Linear models

An important problem occurs when a mean-day is at the border of two classes; each
model may give different results. The simplest solution is to estimate Y}y for each
class, giving f/jht, and to weight these values by a posteriori probabilities p; (x). This
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Table 11. Results in assignment following AIRPARIF alarm rules depending on
weighting or not by a posteriori probabilities

Without weighting With weighting
Predicted alarm: 0 1 2 Total O 1 2 Total
Observed alarm

0 173 12 4 189 172 16 1 189
1 6 19 2 271 7 19 1 27
2 0o 4 4 8 0 6 2 8

Total 170 35 10 224 179 41 4 224

was applied to 1994-95 data, where all stations furnished observations; the results are
given in Table 11.

From Table 11, it appears that there is a tendency to increase the number of
false alarms (level 2) without weighting (6 = 4 + 2 compared to 2 = 1 + 1) and,
on the contrary, to increase the number of slightly missed alarms with weighting (6
compared to 4). By scrutiny of results it was noticed that false alarms were due to an
over-estimation for a subset of stations, whereas the others were correctly estimated.
A look at the observed data shows that when a station is going beyond the alarm level,
a subset of others is not far from this level. So we may argue that some constraints
exist between stations: a high value for one station is not compatible with too low
values for others. Henceforth, a strategy may be to choose for the basic estimation
the model without weighting. If a station presents too high estimates with respect to
the other two (PM1 and PM2), we may choose the model with weighting. The rules
found after some trials are presented in Table 12.

Using these rules, the assignments to AIRPARIF alarm rules are given in Table
13a. To take account o the continuity of the estimation scale, we introduce a new
alarm level between 0 and 1 (coded 0.5) defined as: ”at least two stations have an
observed maximum greater than 110ug/cm3”, and we obtain the results in Table 13b.

From the 13 days with no observed alarm, 10 may be considered as being at the
limit of alarm 1. This may justify a softer approach, by introducing a probability of
pertaining to an alarm class defined by AIRPARIF.

We may note that such a modelling is not an object per se. If the environmental
object appears clear, the relevant methodology to reach it is strongly influenced by
the past practice. Our modelling would surely not have been strictly the same if we
had been free to choose our procedure for defining alarm rules. The rule ”at least 2
stations with O3 concentrations exceeding a fized level” has an evident advantage: its
simplicity. But we are not sure that it is the best rule. It is always difficult, when
one is facing such a problem, to propose the best solution. The European rule is to
use a moving average over 8 hours, which seems inapplicable in forecasting situation.
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Table 12. Rules to choose weighting or not in estimation; m, is the maximum of
means in subgroup PMy (9 =1,2,3)

if {m1 € [130,150] and {m2 < 110} and {m3 < 90}}
or
{my € [150,180] and {m, < 125} and {m3 < 135}}
or
{my > 180} and {m, < 165} and {m3 < 80}
then choose weighting model for PM1
if  {mg € (130,150] and {m; < 100} and {m3 < 95}}
or
{mg € [150,180] and {m; < 120} and {m3 < 100}}
or
{mz > 180} and {m; < 130} and {m3 < 150}
then choose weighting model for PM2
i {ms € [130,150] and {m; < 100} and {mz < 105}]
or
{m3 € [150,180] and {m; < 130} and {m. < 130}}
or
{m3 > 180} and {m; < 160} and {m, < 160}
then choose weighting model for PM3

Table 13. Results of assignment following AIRPARIF alarm rules depending on rules
defined in Table 11

a b
Predicted alarm: 0 1 2 Total O 1 2 Total
Observed alarm
0 175 13 1 189 168 3 1 172
0.5 7 10 O 17
1 6 20 1 27 6 20 1 27
2 0 4 4 8 0 4 4 8
Total 181 37 6 224 181 37 6 224

4.2. Non-parametric forecasting

First we compare our temperature and wind forecasts with the National Meteorology
Office ones and with the forecasts based on the persistency assumption (the forecast
for the day j is the realization on the day j — 1), on different sets of days:

— A : all days of summers 94 and 95,

— T : days of the same period with temperature variation greater than 5 degrees,

— W : days of the same period with variation of wind greater than 2 m/s.
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Table 14. Comparison of temperature and wind velocity forecasts

Mean absolute Mean absolute
error for A error for T

Temperature forecast

Non parametric forecast 2.5 4.1

Meteorology forecast 1.7 2.6

Persistancy forecast 2.8 6.8
Wind velocity forecast

Non parametric forecast 1.1 1.6

Meteorology forecast 1.0 1.5

Persistancy forecast 14 3.0

Results given in Table 14 show that our forecasts are better than the persistency
ones (especially for the days which have large changes in comparison to the day before)
and worse than the National Meteorology Office ones, but they are easier to use in
an automatic procedure since they utilize only the information included in the data
base.

Maximum ozone forecasting results with these two sets of meteorological forecasts
give are summarized in Table 15. Without the Meteorological Office forecasting, ozone
forecasts are underestimated. The principal reason for this is that the non-linear
model is not well suited to forecast at very high temperatures: too few such points
are in the data base.

Table 15. Results of assignment following AIRPARIF alarm rules depending on
meteorological forecasting

Without Meteo Office forecasts With Meteo Office forecasts

Predicted alarm: 0 1 2 Total 0 1 2 Total
Observed alarm
0 176 12 O 188 162 17 0 179
1 20 18 O 38 14 17 7 38
2 4 5 0 9 2 5 2 9
Total 200 35 O 235 178 39 9 226

With the Meteorological Office forecasts there are too much level 1 alarms pre-
dicted at level 2, but no level 0 alarm is predicted at level 2 (Table 15). Level 2 alarms
are not predicted as well as with the linear method.
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4.8. Specific days

Now lets examine carefully some specific days to understand the differences between
the two methods.
1 Aug 95 (Table 16A)

This day was very hot (33.1°C) and a bit windy (3,5m/s), the gradient in the
night took high values, and the day before was also very hot. This is a typically
polluted day and all the methods forecasted it well. In particular, the temperature
and wind forecasts are well predicted.

7 Jul 95 (Table 16B) .

The weather changed this day: the day before temperature was 22.8°C instead
of 26.3°C, the gradient in the night was low. The models did not expected pollution
in these circumstances and all the predictions are too low, missing the level 1 alarm.

Table 16A. August 1st 1995

Linear Linear Non-linear with
Station Realization  without with Non-linear M )
c3e Ly eteo forecasts
weighting  weighting
192 159 159 159 171 129
13175 162 156 156 175 152
71£75 162 156 156 145 149
193 162 169 168 162 187
194 133 166 163 151 153
4191 163 168 166 128 142
177 137 142 141 139 105
4f75 136 130 129 153 150
Level alarm 1 1 1 1 1

Table 16B. July 7th 1995

Linear Linear Non-linear with
Station-  Realization W%thO}lt Wlth_ Non-linear Meteo forecasts
weighting  weighting
192 108 79 79 71 95
1375 132 79 81 62 86
7175 109 79 79 102 90
193 107 116 106 105 107
1f94 136 114 105 38 125
491 161 123 113 104 112
177 89 83 78 72 125
4f75 104 71 67 ? ?

Level alarm 1 0 0 0 0




62 L. Bel et al.

4 Aug 94 (Table 16C)

The gradient in the night was high, and the day before was hot. Temperature on
this day was very high (34.5°C) but badly predicted by the non linear model. The
Meteorological Office forecast was better and so was the ozone forecast but it did not
reach the level 2. Both linear methods predicted well the level 2.

13 Aug 95 (Table 16D)

The temperature was not very high (24.4°C), well predicted by the non-parametric
method but badly predicted by the Meteorology Office. The wind velocity is large
(5m/s) and in consequence the day was not polluted. The day before was hot (31.1°C)
but the gradient in the night was not very high. There occurred a change of weather
that neither the variables in the group PM2 of the linear methods or the Meteorolo-
gical Office could anticipate, which led to overestimation of the ozone maximum on
that day.

Table 16C. August 4th 1994

Linear Linear

Station Realization  without with Non-linear MLmear with
L N eteo forecasts
weighting  weighting
192 215 198 172 103 166
1375 193 190 174 153 161
71£75 187 169 158 156 142
193 186 206 195 109 102
194 144 192 180 117 147
4191 123 173 165 116 163
1f77 133 160 150 114 126
4f75 137 152 141 111 101
Level alarm 2 2 2 1 1

Table 16D. August 13th 1995

Linear Linear

Station Realization withopt yvitl% Non-linear Mﬁ;:g%:;ﬁ ts
weighting  weighting
192 64 100 97 97 125
1375 ? 106 97 77 104
71£75 49 97 94 68 117
193 68 188 153 95 162
194 61 180 146 102 124
4f91 73 172 143 124 136
177 70 85 102 90 116
4f75 55 83 99 57 123

Level alarm 0 2 1 0 1
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4-4. Discordance/concordance in forecasting for 1996

The two model families were applied to 1996 situations. This year seems to be atypical
because the pollution was not high (no alarm of level more than 1 observed).

During the 107 days covering the period (from June 1st to September 15th) we
have used 7 models:

— 5 linear models:

- MOD1: all significant variables without weighting,

- MOD2: all significant variables with weighting,

- MODS: an intermediate model corresponding to the rules defined in Table 12,

- MOD3: a substitute to MOD1 (only temperature and Os) without weighting,

- MOD4: a substitute to MOD2 (only temperature and O3) with weighting,
~ 2 nonparametric models :

- MODS6: the basic one,

- MOD7: same as MODG, but using forecasting for T}, and W, given by

the National Meteorology Office.

The results are given in Tables 17a to 17c; ”Obs” means observed alarms, ”7”
means that prediction was not possible due to the lack of a some variables, ”s” is the
mean square error for prediction. They suggest that

— for linear models weighting is always better; the substitute model is perhaps
good enough, specially for a year as 1996, where false alarms were not detected,

— for nonparametric models meteorological forecasts are surely useful.

Table 17a. Results for models with all significant variables

MOD1 MOD2 MOD5
Predicted alarms Predicted alarms Predicted alarms
Obs Total 0 1 2 7?7 o 1 2 7 0 1 2 7
0 90 61 17 3 9 65 15 1 9 61 18 1 9
1 17 3 11 1 2 3 11 1 2 4 10 1 2
2 0 0 0 0 o 0 0 0 o 0 0 0 o
s = 33.7 s =29.2 s =32.2

Tablel7b. Results for substitute models

MOD3 MOD4
Predicted alarms Predicted alarms
Obs Total 0 1 2 7 0 1 2 7
0 90 66 10 5 9 70 11 0 9
1 17 7 8 0 2 6 9 0 2
2 0 0 0 0 0 0O 0 0 o0
s =35.1 s =27.7
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Table 17c. Results for nonparametric models

MOD6 MOD7
Predicted alarms Predicted alarms
Obs Total 0 1 2 ? 0 1 2 ?

0 90 76 5 0 9 69 7 0 14

1 17 10 5 0 2 7 9 0 1

2 0 0 0 0 0 0 0 O 0
s =293 s = 28.3

5 Final remarks

Until now we have presented separate results for both approaches. From a mathema-
tical point of view, linear methods and nonparametric ones use different statistical
tools, and apparently may give, for high pollution level, some slightly different results:
overestimation for the former, underestimation for the later. Nevertheless, differences
are perhaps more formal than real : the fundamental idea underlying both is that
it is impossible to have one model for all situations. If one existed, it would be a
ncnlinear model able to describe a great range of meteorological conditions for, say,
predictors all varying on a specific continuous scale corresponding to the great variety
of Ile-de-France climate. But it would be an intractable one!

So we must find a framework in which models can be simplified. We have writ-
ten beforehand for the non parametric model: the same circumstances lead to the
same futures. Fundamentally, it is the same for the linear approach: to isolate O3
episodes pollution in order to find coherent classes, in which the assumption of line-
arity is reasonable. CART algorithms (Classification and Regression Tree, Breiman
et al., 1984), often used in American Literature, have the same aim (California State
Software, 1991; Burrows, 1991; Horie, 1987; Seinfeld, 1988; EPA, 1991; National
Research Council, 1991).

It is clear that the approach we have developed is not yet entirely satisfactory;
we have results which may be applied immediately, but improvements are necessary,
specially by introducing statistical reasoning as an essential part of guidance in air
pollution advisories. As always, far more than the development and application of
methods, statistical science is a way of thinking.
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O prognozowaniu zdarzeh ozonowych w rejonie Paryza

STRESZCZENIE

Artykul prezentuje dwa podejécia do problemu wyjaéniania zalezno4ci stgzenia ozonu
od stezenia zanieczyszczen pierwotnych (tlenkéw azotu) i od warunkéw meteorolo-
gicznych. Celem opracowanych metod jest umozliwienie, o godz. 8 rano, predykcji
maksymalnej warto§ci ozonu, ktéra wystapi po potudniu, przy uzyciu 6-letnich da-
nych dotyczacych zanieczyszczen powietrza i danych meteorologicznych. Pierwsze z
podejsé, klasyczne, bazuje na zastosowaniu analizy skupien, analizy wariancji, ana-
lizy dyskryminacyjnej i regresji krokowej. Pozwolilo ono na identyfikacje w rejonie
Paryza trzech wewngtrznie jednorodnych grup stacji monitorowania. Wewnatrz tych
grup, dzienne profile ozonu tworzg skupienia o malejacym poziomie; grupy sg dobrze
rozréznialne na podstawie poprzednich wartoéci ozonu, stezen zanieczyszczen pierwot-
nych oraz warunkéw meteorologicznych. Podejécie drugie oparte jest na metodach
nieparametrycznych i uzywa jadrowego estymatora funkcji autoregresji ze zmiennymi
zewnetrznymi. Prognoza jest wazong suma maksymalnych wartoéci ozonu obserwo-
wanych w przeszlo§ci. Metody sa poréwnane na podstawie danych z roku 1996.

SLOWA KLUCZOWE: zatrucie powietrza, stgzenie ozonu, predykcja, model liniowy,
nieparametryczne prognozowanie jgdrowe.



